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1. Introduction

Close-contact melting has attracted considerable re-

search interests mainly due to high heat transfer rate

and/or low friction between two solid bodies concerned.

Its basic principle, research results, and applications can

be found in a recent review [1]. Focusing our attention

on simpli®cations associated with theoretical modeling,

most of the previous works have relied on the assump-

tion of quasi-steady processes. In order to justify the

assumption or to better understand the unsteady be-

havior involved there, time-dependent approaches are

needed. Such attempts, however, have been made only in

a few studies [2,3].

Lately, an analysis for the transient close-contact

melting occurring on a ¯at surface has been reported [4],

in which a pair of analytical solutions for constant wall

temperature and constant heat ¯ux conditions were de-

rived. In connection with thermal boundary conditions,

it is known that in thermally developed duct ¯ows,

convective heat transfer from an isothermal external

¯uid to the duct surface includes both uniform wall

temperature and uniform heat ¯ux conditions as limiting

cases [5]. This aspect seems to be applicable to close-

contact melting by adequately replacing the axial vari-

ation of the wall heat ¯ux with its time evolution, though

the two situations are di�erent from each other.

This work is aimed at analyzing the initial transient

process from the beginning to the steady state of close-

contact melting induced by convective heating. The

previous study [4] is extended to obtain an analytical

solution for a more general thermal condition. Emphasis

is placed on the reduction procedure to make model

equations cover both constant heat ¯ux and constant

wall temperature limits.

2. Modeling

The physical system considered in this work is de-

picted in Fig. 1. A solid block at its fusion temperature

Tm melts on a ¯at plate that is convectively heated by an

isothermal ¯uid at T1 �> Tm�. As the melting proceeds

at the solid±liquid interface, a thin liquid ®lm is formed

between the solid and plate and grows with time.

Simultaneously with the ®lm growth, the solid block

moves downward by its own weight. This motion leads

the liquid generated by melting to ¯ow outward, being

squeezed out along the periphery. Both the liquid ®lm

thickness d and the solid descending velocity V keep

varying toward the steady state when they are invariant.

The convective heat transfer between the ¯uid and

plate can be described in a similar manner to that in

thermally developed duct ¯ows [6]. Assuming the plate

thickness and its thermal resistance are negligible, the

instantaneous heat ¯ux can be expressed as

q00 � he�T1 ÿ Tw�t��; �1�

where he is presumed to be constant. Two limiting

cases of convective heating are distinguished by the

Biot number that is de®ned as the ratio of external to

internal conductances, i.e., Bi � heR=k, where R is a

characteristic length. Since R is also related to nondi-

mensionalization of other quantities, its choice is prob-

lem-dependent. When Bi is large, the wall temperature

approaches the isothermal condition, Tw � T1. When Bi

is small, q00 can be treated as constant because the wall

temperature is so throttled by the external resistance

(hÿ1
e ) as to vary quite slowly with time.
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In order to render the problem analytically tractable,

some assumptions that have been commonly adopted in

close-contact melting analyses [4,7±9] are introduced.

The thin ®lm approximation is invoked, so that the z-

directional conduction dominates heat transport. In

addition, a decrease in the solid mass during the tran-

sient process is neglected.

The transient behavior can be represented by time

evolution of d and V, for which two equations are

needed. One is the force balance between the pressure in

the liquid ®lm and the weight and inertia of the de-

scending solid

M g
�
ÿ dV

dt

�
�
Z

s

P dS: �2�

The inertia term is neglected additionally because the

acceleration of descending motion is much smaller than

that of gravity. The other is the energy conservation at

the melting front

ÿ k
oT
oz

����
z�d

� qshsf V
�
� dd

dt

�
: �3�

3. Analysis

For the closure of modeling, the pressure force and

interfacial temperature gradient involved in the above

model equations should be expressed in terms of depen-

dent variables. This can be done by solving the continu-

ity, momentum, and energy equations in the liquid ®lm.

Since the thermal condition at issue is irrelevant di-

rectly to the force balance, the already established

pressure distribution [4,7,9] can be applied to Eq. (2).

Without repeating the detailed procedure, the result cast

in a dimensionless form is cited here.

eV � �1ÿ eq� ded
det � eg eH

GPr

 !ed3; �4�

Nomenclature

B coe�cient, Bi edc

Bi Biot number, heR=k
c liquid speci®c heat

F consolidated parameter, eg eH =�GPr�
g gravitational acceleration, Fig. 1eg dimensionless gravitational acceleration,

gR3=a2

G geometrical parameter of solid block

he heat transfer coe�cient, Fig. 1

hsf latent heat of fusion

H height of solid block, Fig. 1eH dimensionless solid height, H=R
k liquid thermal conductivity

M mass of solid block, Fig. 1

Nu Nusselt number, Eq. (15)cNu normalized Nusselt number, Eq. (16)

hcNui mean normalized Nusselt number, Eq. (18)

P pressure in the liquid ®lm

Pr Prandtl number, lc=k
q00 supplied heat ¯ux, Eq. (1)

R characteristic length

S contact area

Ste Stefan number, c�T1 ÿ Tm�=hsf

t timeet dimensionless time, ta=R2bt normalized time, et eVc=�eqedc�btu normalized transient period

T temperature

T1 heating ¯uid temperature, Fig. 1

Tm fusion temperature of the solid, Fig. 1

Tw heating wall temperature, Fig. 1bTw normalized wall temperature, Eq. (17)

V solid descending velocity, Fig. 1eV dimensionless solid descending velocity, VR=abV normalized solid descending velocity, eV =eVc

z vertical coordinate, Fig. 1

Greek symbols

a liquid thermal di�usivity, k=�qlc�
d liquid ®lm thickness, Fig. 1ed dimensionless liquid ®lm thickness, d=Rbd normalized liquid ®lm thickness, ed=edc

q densityeq density ratio, ql=qs

Subscripts

c steady state

l liquid phase

s solid phase

Fig. 1. Schematic of the present close-contact melting system.
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where dimensionless quantities are de®ned in Nomen-

clature. The parameter G represents the geometric

con®guration of the solid block, and its value depends

on the characteristic length used in each analysis.

When the solid is two-dimensionally rectangular or

circularly cylindrical with a half of the width or the

radius as the length scale, G is a constant [7]. When the

solid is a rectangular parallelepiped with a square root

of cross-sectional area as the length scale, G is ex-

pressed as a function of the aspect ratio of a contact

surface [4].

Due to the thin ®lm approximation, the energy

equation results in a linear temperature pro®le across the

liquid layer, which leads Eq. (3) to

k�Tw ÿ Tm�
d

� qshsf V
�
� dd

dt

�
: �5�

After the unknown Tw is replaced by T1 using Eq. (1), it

is nondimensionalized as

eV � ded
det � eqSte

Bi

1� Bied : �6�

While Eq. (6) properly re¯ects the isothermal limit at

a large extreme of Bi, it merely shows no melting at

its small extreme. That is, it fails to meet our aim that

the model equations include both constant heat ¯ux

and constant wall temperature conditions as limiting

cases. This problem may be overcome by further re-

ducing the model equations. In view of the previous

study [4], a way is normalization based on the steady

solution.

Since the time derivatives vanish at the steady state,

the steady solution is readily obtained. Rearranging Eqs.

(4) and (6) leads to

ed3
c � Bied4

c � eqSteBiF ÿ1; eVc � F ed3
c : �7�

For a small Bi, noting that edc � 1 under a normal close-

contact melting condition, the second term on the left-

hand side of Eq. (7) can be neglected to yieldedc � �eqSte�1=3F ÿ1=3Bi1=3; eVc � �eqSte�Bi: �8�
For a large Bi, the solution is derived asedc � �eqSte�1=4F ÿ1=4; eVc � �eqSte�3=4F 1=4: �9�

It is con®rmed that the results for two limiting cases

coincide with the known steady solutions for constant

heat ¯ux and constant wall temperature conditions, re-

spectively [4].

Using de®nitions in Nomenclature, along with the

steady solution (7), Eqs. (4) and (6) are normalized, re-

spectively, as

bV � �1ÿ eq�eq dbd
dbt � bd3; �10�

bV � 1eq dbd
dbt � 1� B

1� Bbd : �11�

Eq. (11) di�ers from Eq. (6) in that its right-hand side

approaches the constant heat ¯ux limit, i.e., 1, as B (or

Bi) reaches the smallest extreme. Now, the model

equations set up for convective heating include both of

the limiting cases.

The solution procedure is straightforward. Sub-

tracting Eq. (10) from (11), we have

dbd
dbt � 1� B

1� Bbd ÿ bd3: �12�

This is integrated to give

bt � Z bd
0

1� B
1� Bf

�
ÿ f3

�ÿ1

df; �13�

where the initial condition bd�0� � 0 has been applied.

The bd ÿbt relation can be evaluated through a numerical

integration. Once bd�bt � is known, bV �bt � is determined

from

bV � �eq ÿ 1�eq 1� B

1� Bbd � bdeq : �14�

Eq. (13) admits analytical integrations for the two

limiting cases, the results of which are identical with the

previous solutions that were derived separately [4].

The heat transfer rate between the ¯uid and system is

characterized by the Nusselt number de®ned as [6]

Nu � q00

T1 ÿ Tm

R
k
: �15�

This can be rewritten as Nu � Bi=�1� Bbd�. For the same

reason as in Eq. (6), the normalized Nusselt number is

used herecNu � �1� B�=�1� Bbd�: �16�
The wall temperature is another variable of interest since

it is easier to measure than the others, e.g., d and V. Its

normalized form is

bTw � Tw ÿ Tm

Twc ÿ Tm

� �1� B�bd
1� Bbd : �17�

As Bi approaches the limiting values, Eq. (17) reduces tobTw � bd and 1, respectively.

4. Results and discussion

It has been repeatedly shown that two limiting cases

of convective heating correspond to constant heat ¯ux

and constant wall temperature conditions, respectively.

This means that the present work includes the previous
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study [4] as a subset. The present analysis can be justi®ed

by the already validated limiting cases.

Among various parameters, the focus here is on the

Biot number. In the calculations presented below, all the

other conditions have been ®xed at typical values [2]:eg � 5:521� 1011; eq � 1:0; eH � 1:0;G � 4:0; Pr � 13:44,

and Ste � 0.01266, hence F � 1:027� 1010.

The dependence of steady liquid ®lm thickness edc and

solid descending velocity eVc on Bi is delineated in Fig. 2.

In view of the variation patterns, close-contact melting

induced by convective heating can be divided into three

regimes, viz., constant heat ¯ux, intermediate (shaded in

the plot), and isothermal. This work is the ®rst to deal

with the intermediate regime. Depending on the con-

ditions other than Bi, the bounds of each regime turn

out to shift, but the basic pattern remains unchanged.

The curves in the constant heat ¯ux and isothermal

regimes agree with the limiting solutions (7) and (8),

respectively.

Five values of Bi are selected to show the e�ect of

supplied heat ¯ux on the initial transient behavior.

Two of them are small and large extremes of Bi, and

the rest belong to the intermediate regime: Bi� 300,

1000, and 3000. Fig. 3 shows time evolution of the

normalized liquid ®lm thickness bd and solid descending

velocity bV . In these plots, two curves for the limiting

cases form the lower and upper bounds of evolution

paths. Three intermediate ones lie inside the envelope

without intersecting. As Bi increases, they gradually

shift from the lower to upper bounds, showing a sim-

ilar trend.

Eq. (17) can be used for predicting the transient

behavior by monitoring the wall temperature variation

in experiments. Fig. 4 illustrates time evolution of the

normalized wall temperature bTw for the ®ve values of

Bi. The curve for the smallest Bi seems to vary sharply

in the normalized time scale. However, the heat ¯ux

remains nearly constant because the transient period

(i.e., the duration from the beginning to the steady

state of melting) in real time is long. Note that the

time scale is of the order of Biÿ2=3 in Eq. (8). Since Bi

is the only parameter involved in this plot, the heat

transfer coe�cient he in an experiment can be evalu-

ated simply by selecting a calculated bTw�bt � curve

that ®ts best the measured variation of the wall

temperature.

The normalized Nusselt number needs no further

explanation since it is self-evident in Eq. (16) and

Fig. 3(a). Instead, heat transfer characteristics during

the transient process can better be shown by the mean

normalized Nusselt number de®ned as

hcNui � 1btu

Z btu

0

cNu dbt: �18�

Although the value of btu depends on its de®nition [4],btu � 2:0, which is roughly estimated from Fig. 3, is used

here. Fig. 5 elucidates the dependence of hcNui on Bi. The

curve asymptotically approaches the limiting values as

Fig. 2. Dependence of steady solution on Biot number.

Fig. 3. Time evolution of normalized dependent variables for ®ve Biot numbers: (a) liquid ®lm thickness; (b) solid descending velocity.
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Bi reaches small and large extremes, while varying

sharply in the intermediate regime, which is similar to

that for thermally developed duct ¯ows [6]. The limiting

value of hcNui for the smallest Bi is unity, and that for the

other extreme is obtained, via some mathematical ma-

nipulations, as

hcNui � 1btu

Z btu

0

coth1=2�2bt� dt � 1

2
1

�
� pbtu

�
: �19�

Note that both of the two limiting values of hcNui are

constant.

5. Conclusions

This work has investigated the initial transient be-

havior during close-contact melting on a ¯at plate that is

convectively heated by an isothermal ¯uid. Using nor-

malization based on the steady solution, the model

equations set up for convective heating have been

modi®ed to include both constant heat ¯ux and constant

wall temperature conditions as limiting cases. In this

procedure, the properties of steady solution have also

been clari®ed. The normalized model equations yield a

compactly expressed analytical solution.

Depending on the Biot number, close-contact melting

induced by convective heating can be divided into three

regimes: constant heat ¯ux, intermediate, and isother-

mal. The constant heat ¯ux and isothermal limits serve

as the lower and upper bounds on time evolution of the

normalized variables. Finally, the mean normalized

Nusselt number is proved to vary monotonically be-

tween the two limiting values, which is similar to the

established fact in thermally developed duct ¯ows.

References

[1] A. Bejan, Contact melting heat transfer and lubrication,

Adv. Heat Transfer 24 (1994) 1±38.

[2] H. Hong, A. Saito, Numerical method for direct contact

melting in transient process, Int. J. Heat Mass Transfer 36

(1993) 2093±2103.

[3] A. Saito, H. Kumano, S. Okawa, K. Yamashita, Analytical

study on transient direct contact melting phenomena, Trans.

Jpn. Assoc. Refrigeration 13 (1996) 97±108.

[4] H. Yoo, Analytical solutions to the unsteady close-contact

melting on a ¯at plate, Int. J. Heat Mass Transfer 43 (2000)

1457±1467.

[5] E.M. Sparrow, S.V. Patankar, Relationship among bound-

ary conditions and Nusselt numbers for thermally devel-

oped duct ¯ows, J. Heat Transfer 99 (1977) 483±485.

[6] A. Bejan, Convection Heat Transfer, second ed., Wiley,

New York, 1995, pp. 118±121.

[7] M.K. Moallemi, B.W. Webb, R. Viskanta, An experimental

and analytical study of close-contact melting, J. Heat

Transfer 108 (1986) 84±899.

[8] K. Taghavi, Analysis of direct-contact melting under

rotation, J. Heat Transfer 112 (1990) 137±143.

[9] A. Bejan, The fundamentals of sliding contact melting and

friction, J. Heat Transfer 111 (1989) 13±20.

Fig. 4. Time evolution of normalized wall temperature for ®ve

Biot numbers.

Fig. 5. Dependence of mean normalized Nusselt number on

Biot number.
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